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For certain families of fluid flow, a conserved quantity—stream helicity—has been conjectured. Using
examples of linked and knotted streamtubes, it has been shown that stream helicity does, in certain cases,
entertain itself with a very precise topological meaning, viz., a measure of the degree of knottedness or linkage
of stream tubes. As a consequence, stream helicity may emerge as a robust topological invariant.
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I. INTRODUCTION

Lord Kelvin �who along with Helmholtz pioneered the
subject of vortex motion� recognized in the late 19th century
that in an inviscid and barotropic fluid being acted upon by
irrotational body forces, any linkage or any knottedness in
the vorticity field at any earlier time should remain con-
served at all later times. After almost 100 years, Moreau �1�
and later Moffatt �2� established an invariant known as he-
licity which is of topological character and encompasses
Kelvin’s insight. The stark analogy between vorticity ��� � in

ordinary fluid dynamics and magnetic field �B� � in magneto-
hydrodynamics �MHD� prompted Moffatt to give similar to-
pological interpretations to magnetic helicity and cross helic-
ity �which, by the way, measures the degree of “mutual”

knottedness of the two fields �� and B� �. Hence, researchers
were able to effectively connect the two very rich fields—
viz., topology and fluid dynamics—and excited a lot of in-
terest in this direction. But what Lord Kelvin had missed was
the possible existence of knotted streamtubes in steady Euler
flows, a fact very logically speculated on by Moffatt �3�. Not
much has been done on that. Here, in this paper, inspired by
the works of Moffatt, we shall introduce in Sec. II a quantity
which we shall call “stream helicity” �S� in inviscid and
incompressible fluid being forced by irrotational body forces.
It will be shown that one may conjecture that the stream
helicity is a conserved quantity under certain restrictions
which are not, of course, very rare in practice. In Sec. III, we
shall note how this conserved quantity can have a very sound
topological meaning for at least some kinds of flows and,
hence, how stream helicity can be raised to the status of a
topological invariant for linked and knotted streamtubes.

II. STREAM HELICITY

Let us start with the Euler equation �Eq. �1�� for three-
dimensional, inviscid, incompressible fluid being acted upon
by irrotational body forces. P used in the equation includes
the effect of such forces also. Since the fluid is
incompressible—i.e., the density is constant—we take the
density to be unity for convenience:

�

�t
u� + �u� · �� �u� = − �� P . �1�

Incompressibility yields for the velocity field u�

�� · u� = 0, �2�

which helps in defining the vector potential �� for the velocity
field as follows:

u� = �� � �� . �3�

Obviously, �� is not unique, for a term �� �, � being a scalar
field, can always be added to it, keeping u� unchanged. We
shall come back to this issue in the right place. For now, let
us put relation �3� into Eq. �1� to get:

�

�t
��� � ��� + �u� · �� ���� � ��� = − �� P . �4�

But we have

��� � �u� · �� ����i = �ijk� j�ul�l�k�

= �ijk�� jul���l�k� + �ijkul� j�l�k

= �ijk�� jul���l�k� + ��u� · �� ���� � ����i. �5�

Using relation �5� in Eq. �4� we get

� �

�t
��� � ��� + �� � ��u� · �� �����

i
= �ijk�� jul���l�k� − �iP

⇒
�

�t
�� + �u� · �� ��� = curl−1�� , �6�

where �� is defined as

�i 	 �ijk�� jul���l�k� − �iP . �7�

Now, let us define stream helicity �S� as

S 	 

V

�� · u� d3x , �8�

where V is a volume occupied by the fluid. At this point let
us ponder over the aforementioned nonuniqueness of the
vector potential �4�. For a smooth discussion’s sake, we as-
sume for the time being that the volume is simply connected.
Suppose �i→�i+�i�; then, from the definition �8� of stream*sagar@bose.res.in

PHYSICAL REVIEW E 76, 036306 �2007�

1539-3755/2007/76�3�/036306�4� ©2007 The American Physical Society036306-1

http://dx.doi.org/10.1103/PhysRevE.76.036306


helicity we can find the change �S in S to be

�S = 

V

�� � · u� d3x = �
�V

�u� · n̂ d2x , �9�

where n̂ is the unit vector perpendicular to the infinitesimal
surface element d2x and we have used relation �2� and Gauss
divergence theorem. Relation �9� amounts to saying that the
stream helicity will be gauge invariant in case the surface �V
bounding V is the surface made up of stream lines—i.e.,
u� · n̂=0 on �V. This condition for gauge invariance is rather
strong because if u� · n̂�0 on �V, then one cannot seek refuge
in the Coulomb gauge for it is too loosely defined inside V
with no information about the outside field whatsoever. More
starkly, it means that different solenoidal vector potentials
inside V can correspond to Coulomb potentials of fields
which have different structures outside V. Now if we relax
the condition that V be simply connected, then the line inte-

grals of �� about the “holes” in the possibly multiply con-
nected region have to be specified in order to have gauge-
invariant stream helicity within �V on which u� · n̂=0.

In the passing, one may note that u� · n̂=0 on �V is clearly
only a sufficient condition, and not necessary. For �S to be 0,
from Eq. �9�, only the total surface integral needs to be zero,
and so u� · n̂ could be nonzero, but could have positive and
negative contributions on the surface, while still leading to
the surface integral being zero. Thus, S might in fact be
conserved even when u� · n̂�0 on the surface.

We now wish to demonstrate that under certain restric-
tions this quantity is in fact conserved. So we take total de-
rivative of S with respect to time to get

dS

dt
=
 D

Dt
��� · u��d3x

⇒
dS

dt
=
 �� · �− �� P�d3x +
 u� · �curl−1�� �d3x , �10�

where D /Dt is the material derivative with respect to time

and it basically is shorthand for � /�t+u� ·�� . Again, simple
vector algebra suggests

��� � ��� · �curl−1�� � = �� · ��� � curl−1�� � + �� · �� . �11�

With relation �3� in mind, inserting relation �11� into Eq.
�10�, we have the following:

dS

dt
= − 2
 �� · �� Pd3x +
 �� · ��� � curl−1�� �d3x

+
 �i�l��ijk�k� jul�d3x , �12�

where Eq. �2� has been used. If all the terms on the right-
hand side �RHS� of Eq. �12� vanish, then one may set

dS

dt
= 0 �13�

and say that stream helicity is a conserved quantity.

The first two terms on the RHS of Eq. �12� can be
changed to integration over the surface which bounds the
volume V in question �the surface will obviously extend to
infinity if the fluid is unbounded� using the Gauss divergence

theorem, and so if �� decays fast enough to go to zero on the
bounding surface, then these two term vanish; there may be
other reasons for the terms to vanish as will be seen in the
next section. Now, let us consider the third term. Although it
seems to be very restrictive, one can see that in the following
commonly occurring cases the integrand of this term trivially
vanishes.

�i� The vector potential is one dimensional.
�ii� The vector potential has no dependence on the direc-

tion along the velocity field. �Other conditions given below
are basically this condition’s corollary.�

�a� �� is two dimensional but has dependence only on the
third direction.

�b� �� is two dimensional with spatial variations only on
the plane containing it.

�c� �� is three dimensional but depends only on any one of
the three independent directions.

One can see that such flows �for which the third term
becomes zero� are very commonly found in any elementary
textbooks on fluid mechanics. For example, in accordance

with case �i�, for the one-dimensional vector potential ��

= k̂	�x2+y2� /4, the corresponding flow is u� =−î	y /2

+ ĵ	x /2 which basically is the velocity field for three-
dimensional fluid rotating counterclock about the z axis. As
another instance, this time to go with case �ii� �ii�b�, to be
precise�, is that of a uniform flow along the x direction: u�

=Uî which is generated by the vector potential �� =− ĵUz /2

+ k̂Uy /2, which evidently is two dimensional with spatial
variations only on the y-z plane containing it. A rather non-
trivial case �as an example of case ii�a�� is for the flow: u�

= îU sin az+ ĵU cos az �a is a constant� for which the vector

potential is �� = î�U /a�sin az+ ĵ�U /a�cos az; readers must
have noticed that this is just a variant of the more general
flow—viz., ABC flow �see, e.g., Ref. �5��.

So we conjecture for the families of fluid flow for which
the vector potential falls into the above set, and if eventually
Eq. �13� holds, stream helicity is a conserved quantity. Also,
for fluid flows for which it does not fall into the above set but
the integration goes to zero for some reason or the other
�which has not been investigated�, S will remain conserved.
In the next section we shall examine a scenario wherein
stream helicity is conserved.

III. TOPOLOGICAL MEANING OF STREAM HELICITY

Now, we ask the question if it is possible to give stream
helicity a topological meaning and, more importantly, can
that topological meaning turn out to be a topological invari-
ant. We shall see that the answer is in affirmative. To get both
expectations met, one �other uninvestigated possibilities may
also be there� of the ways seems to be the following: Con-
sider two circular thin streamtubes which are singly linked
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and for the two tubes the “strengths” are VC1
and VC2

, re-
spectively, where C1 and C2 denote axis circles of the corre-
sponding tubes. By strengths we mean that VC1

=u� ·da�1 and
VC2

=u� ·da�2 �see Fig. 1�. Again, we assume that the velocity
field we shall be dealing with is generated by a vector po-

tential �� which is a Beltrami field—i.e.,

u� = �� � �� = 
�� , �14�

where 
 is a numerical constant. Moreover, suppose that of

the conditions gathered in the previous section for ��, at least
one is applicable, say, the second one, such that

�u� · �� ��� = 0�; �15�

whether this is possible or not may be a valid question. One

may derive “some” relief from the fact that if �� is analogous
to ABC flow �Gromeka �1881�, Beltrami �1889��, then it does
satisfy such a condition though unfortunately it may not sus-
tain a linked structure of streamtubes. Then the streamtubes
will be made up of stream lines which are coincident with

the “flux lines” of the �� field.
If we define the volume over which the integration is

defined for the stream helicity to be the volume occupied by
the linked structure only, then

S 	
 �� · u� d3x =
 
 

1st stream tube

�� · u� d3x

+
 
 

2nd stream tube

�� · u� d3x

⇒S = VC1

C1

�� · dl�1 + VC2

C2

�� · dl�2

⇒S = VC1
 

DC1

u� · d�� + VC2
 

DC2

u� · d��

⇒S = VC1
VC2

+ VC1
VC2

⇒S = 2VC1
VC2

, �16�

where in the preceding steps we have used u�d3x→VC1
dl�1

and VC2
dl�2 on C1 and C2, respectively; DC1 and DC2 denote

the area spanned by C1 and C2, respectively. Obviously, if
the linking number is n and not 1 as in this case, one would
easily generalize the result to

S = 2nVC1
VC2

, �17�

which, being dependent on the mutual linking of stream-
tubes, is a topological quantity. One may rewrite Eq. �12�
using the Gauss divergence theorem in the following form:

dS

dt
= − 2
 ��� · n̂�Pd2x +
 �curl−1�� � · �n̂ � ���d2x

+
 �i�l��ijk�k� jul�d3x , �18�

where n̂ is the unit vector perpendicular to the surface at each
point on the surface of the linked structure. The first term and
the third terms of Eq. �18� are zero in this case by construc-
tion of the linked structure; so is the second term, but it
needs a bit of manipulation as explained below.

First of all, we use Eq. �6� to rewrite the integrand of the
second term of the relation �18� as

� ���

�t
+ �u� · �� ���� · �n̂ � ��� = �ijknj�k� ��i

�t
+ �ul�l��i� .

�19�

Now, if we consider the Frenet-Serret coordinate system

�T� ,N� ,B� �, then in the case we are considering �� / ����=T� and

n̂=N� ; obviously on the surface of the specific tube we are
considering, at each point, the triad so that there �2=�3=0
and n1=n3=0 and hence due to the antisymmetry of �ijk we
have

�curl−1�� · �n̂ � ��� = 0. �20�

So obviously we end up with the following relation:

dS

dt
= 0. �21�

Therefore, for incompressible, ideal, and conservatively
forced fluid flow, in certain configurations, we can have a
topological invariant—stream helicity—for linked structures
of streamtubes.

So far, so good. So stream helicity does seem to make
physical sense for linked two �or more� streamtubes. But
what if a single streamtube is knotted? A single knotted
streamtube must have an unavoidable twist of velocity field
�which we hope, in this case also, may be derived from a
Beltrami velocity vector potential and is of a similar kind as
has been dealt with earlier in this paper� within the tube.
How to deal with such a scenario has been discussed for
knotted vortex filaments by Moffatt and Ricca �6�. We know
when an arbitrary tame knot is viewed in a standard plane of
projection with finite number of crossings, each of which is

� � � � �

C1 C2

1da da 2

FIG. 1. Linked closed streamtubes. The tube and hence the
stream lines inside are not twisted; i.e., the fluid inside the tube does
not swirl. The directions of arrows are showing the direction of the
stream lines filling the tubes.
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either positive or negative, it can be changed to an unknot
�and ergo, subsequently continuously deformed to a circle�
by switching the crossings for a finite number of times. �To
remind the reader, a crossing is defined as positive or nega-
tive according as the overpass must be rotated counterclock-
wise or clockwise to bring it into coincidence with the un-
derpass.� One may note that the resulting circle may be
converted back to the original knot simple by performing the
operations in reverse order. With this in mind, let us consider
a tubular region with the circle as axis. The cross section of
the tube is small, and over that the velocity of the field,
which we suppose is filling the tube with strength V, is uni-
form; each stream line is, of course, a concentric circle to the
circle serving as the axis. Now, let us transversely cut the
tube somewhere and reconnect it back after giving it a twist
through an angle 2�N �where N is an integer�. This way we
are introducing a stream helicity of magnitude NV2. Then by
introducing proper switching loops with similar strength, this
construction may be changed to a knot with stream helicity

S = �N + 2�n+ − n−��V2, �22�

where n+ and n− are, respectively, the number of positive and
negative switches needed to create the knot whose stream
helicity we are interested in. One may prove that N+2�n+

−n−� is actually the linking number of any pair of stream
lines in the knotted streamtube. It also is the self-linking
number of the “framed” knot which is framed using the

Frenet-Serret coordinate system �7�. A point to be noted is
that for the kind of velocity field we are discussing S will
remain conserved and hence emerges as a topological invari-
ant, for, evidently, S depends on the topology of the knotted
streamtube.

IV. CONCLUSION

To summarize, the existence of a conserved quantity—
stream helicity—has been conjectured in fluid dynamics. By
seeking a topological interpretation for it in certain configu-
rations of linked and knotted streamtubes, the bridge be-
tween topology and fluid dynamics has been made even
stronger. In addition, as a by-product, the seemingly non-
physical quantity—velocity vector potential—has given it-
self a sort of physical meaning by getting involved in mea-
suring the degree of knottedness of streamtubes.
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